Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[bis(4-chlorosalicylato-кO)copper(II)]-di- μ-3-pyridylmethanol- $\left.\kappa^{2} N: O ; \kappa^{2} O: N\right]$

Jaroslava Maroszová, ${ }^{\text {a }}$ Ladislav Martiška, ${ }^{\text {a }}$ Dušan Valigura, ${ }^{\text {a }}$ Marian Koman ${ }^{\text {a }}$ and Tadeusz Glowiak ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Inorganic Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and
${ }^{\mathbf{b}}$ Faculty of Chemistry, Wrocław University, PL-50383 Wrocław, Poland

Correspondence e-mail:
jaroslava.maroszova@stuba.sk

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.087$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The polymeric structure of the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{3}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]_{n}$, at $100(2) \mathrm{K}$ contains two-dimensional sheets parallel to the $a c$ plane. The $\mathrm{Cu}^{\mathrm{II}}$ atom, lying on an inversion centre, has an octahedral coordination environment. It is bonded in a trans-square-planar arrangement to the N atoms of two 3-pyridylmethanol molecules and one carboxylate O atom from each of two 4-chlorosalicylate anions. The axial positions are also occupied by 3-pyridylmethanol, but coordinated through O rather than the pyridyl N atom.

Comment

3-Pyridylmethanol (also known as ronicol and abbreviated as 3-pyme) is known for its ability to be bonded as a monodentate ligand and/or bridging ligand (Stachová et al., 2005) that can form linear chains of copper(II) atoms bridged by two 3-pyme molecules, as well as two-dimensional sheets. Recently, another mode of 3-pyme bridging, namely the formation of one-dimensional 'accordion chains' with copper(II) atoms bridged by one 3-pyme ligand, has been reported (Moncol et al., 2005). As part of our systematic study of copper(II) carboxylate complexes with biologically interesting molecular ligands, we report here the crystal structure of the title compound, (I).

The asymmetric unit of (I) consists of a $\mathrm{Cu}^{\mathrm{II}}$ atom located on an inversion centre, one 4-chlorosalicylate anion and one 3pyridylmethanol molecule (Fig. 1). The coordination environment around the $\mathrm{Cu}^{\mathrm{II}}$ atom is nearly octahedral. The equatorial plane consists of a pair of monodentate 4 -chlorosalicylate ligands bound through their carboxylate O atoms $[\mathrm{Cu}-\mathrm{O} 1=1.9787(12) \AA]$ and a pair of neutral 3-pyme molecules coordinated via the N atoms of the pyridine ring $[\mathrm{Cu}-$

Received 3 February 2006
Accepted 24 February 2006
$\mathrm{N} 1=2.0194(15) \AA]$. The axial positions are occupied by two hydroxy O atoms $[\mathrm{Cu}-\mathrm{O} 4 B=\mathrm{Cu}-\mathrm{O} 4 \mathrm{C}=2.560$ (3) \AA] from two adjacent symmetry-related 3-pyme molecules. Each $\mathrm{Cu}^{\text {II }}$ complex unit is connected to another four units through the 3pyme ligands to form two-dimensional layers parallel to the $a c$ plane.

The crystal structure of (I) can be compared with others of the general formula $\left[\mathrm{Cu} X_{2}(3 \text {-pyme })_{2}\right]_{n}$, where X is salicylate (Hoang et al., 1992), niflumate (Valach et al., 1997), clofibriate (Moncol et al., 2001), flufemate (Lörinc et al., 2004) and 2chlorobenzoate (Moncol et al., 2005).

Experimental

2-Pyridylmethanol (2 mmol) was added to copper(II) acetate (1 mmol) in aqueous solution (20 ml). 3,5-Dinitrobenzoic acid (2 mmol) was then added with stirring. The powdery blue product was filtered off, washed with a small amount of water and dried at room temperature. Blue prismatic crystals of (I) suitable for X-ray analysis were obtained from the mother liquor after slow roomtemperature crystallization over a period of a few weeks.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=624.91$
Monoclinic, $P 2_{1} / c$
$a=11.031$ (2) \AA
$b=12.815$ (3) A
$c=9.3410$ (2) \AA
$\beta=104.16$ (3) ${ }^{\circ}$
$V=1280.3(4) \AA^{3}$
$Z=2$
$D_{x}=1.621 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.555 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation
Mo $K \alpha$ radiation
Cell parameters from 5225 reflections
$\theta=3.7-28.6^{\circ}$
$\mu=1.12 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Prism, blue
$0.20 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection

Kuma KM4 CCD area-detector diffractometer
ω scans
Absorption correction: refined from ΔF
(Parkin et al., 1995)
$T_{\text {min }}=0.818, T_{\text {max }}=0.846$
8423 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.087$
$S=1.17$
3002 reflections
178 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0453 P)^{2}\right. \\
& \quad+0.256 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.61 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 1$	$1.9787(12)$	$\mathrm{Cu}-\mathrm{N} 1$	$2.0194(15)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 1$	180	$\mathrm{~N} 1^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 1$	180
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1^{\mathrm{i}}$	$90.11(6)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Cu}$	$119.97(11)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1$	$89.89(6)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu}$	$123.24(11)$

Symmetry code: (i) $-x,-y,-z$.

Figure 1
The monomer unit of (I). Displacement ellipsoids are drawn at the 40% probability level. Dotted lines represent $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Atoms labelled with the suffixes A, B and C are generated by the symmetry codes $(-x,-y,-z),\left(x,-\frac{1}{2}-y,-\frac{1}{2}+z\right)$ and $\left(-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$, respectively.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H30 $\cdots \mathrm{O} 1$	0.82	1.85	$2.5705(18)$	146
O4-H40 $^{\text {ii }}$	0.82	1.83	$2.6400(17)$	168

Symmetry code: (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.
H atoms were placed in geometrically calculated positions and allowed to ride on their parent atoms, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}$ $=0.93$ (aromatic) or $0.97 \AA$ (methylene). The $U_{\text {iso }}(\mathrm{H})$ value for all H atoms was fixed at $0.05 \AA^{2}$.

Data collection: KM-4 CCD System Software (Kuma Diffraction, 1998); cell refinement: KM-4 CCD System Software; data reduction: KM-4 CCD System Software; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by VEGA grant No. 1/2452/05.

References

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hoang, N. N., Valach, F., Macašková, L. \& Melník, M. (1992). Acta Cryst. C48, 1933-1935.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kuma Diffraction (1998). KM-4 CCD System Software. Version 1.149. Kuma Diffraction Instruments, Wrocław, Poland, and University of Lausanne, Switzerland.
Lörinc, S̆., Koman, M., Melník, M., Moncol, J. \& Ondrušová, D. (2004). Acta Cryst. E60, m590-m592.
Moncol, J., Koman, M., Melník, M. \& Glowiak, T. (2001). CrystEngComm, 54, $1-3$.
Moncol, J., Segla, P., Miklos, M., Mazur, M., Glowiak, T., Valko, M. \& Koman, M. (2005). Polyhedron, 25, 1561-1566.

Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.

metal-organic papers

Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Stachová, P., Valigura, D., Koman, M. \& Glowiak, T. (2005). Acta Cryst. E61, m994-m996.
Valach, F., Tokarčík, M., Kubinec, P., Melník, M. \& Macašková, L. (1997). Polyhedron, 16, 1461-1465.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

